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ABSTRACT

In this paper massively parallel algorithms and architectures for real-time
wavefront control of a dense adaptive optic system (’SXLENE) are presented. We
have already shown that the computation of a near optimal control algorithm
for SELENE can be reduced to the solution c}f a discrete Poisson equation on a
regular domain. Although, this represents an optimal computation, due the
large size of the system and the high sampling rate requirement, the
implementation of this control algorithm pc,ses a computationally challenging
pxoblern since it demands a sustained computational throughput of the order of
10 GFlops. We develop a novel algorithm, designated as Fast Invariant
Imbedding algorithm, which offers a massive degree of parallelism with simple
communication and synchronization requirements. Due to these features, our
algorithm is signif~cantly more efficient than other Fast Poisson Solvers for
implementation on massively parallel architectures. We also discuss two
massively parallel, algorithmically special~zed, architectures for low-cost
and optimal implementation of the Fast Invariant Imbedding algorithm.

1. INTRODUCTION

This paper presents massively parallel algorithms and architectures for
wavefront control of the Space Laser Electric Energy (SEI,ENE:) power beaming
system. The real-time wavefront control of S!ZLENE represents a computationally
challenging problem due to the large size of the system and the high sampling
rate requ~rement. We have already shown that the computation of a novel, near
optimal, control wavefront algorithm can be reduced to the solution of a two-
dimensional (2D) discrete Poisson equation with Neumann boundary conditions
[11. Although, SELENE can have rather arbitrary geometries, we have shown [11
that the computational domain of the corresponding discrete Poisson equation
can be transformed into a regular square domain.

Such a domain regularization strategy, while introduces a minimal error in
the computation, enable the use of the so called Fast Poisson Solvers [2] with
an optimal computational cost for our problem. For a typical configuration of
the SELENE comprising a 2D array of NxN segments, the computational complexity

of our control strategy is then of 0(N2Log N). Compared with the O(N4)
computational complexity of fully optimal cc,ntrol strategies and for the
typical values of N of the order of hundreds, this represents more than three
orders of magnitude improvement in the computational cost. However, even with
such a drastic improvement, the real-time im~]lernentation of our control
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strategy by using the Fast Poisson Solvers still requires a formidable
computing capability. For a typical case of N = 500 and with a 1 KHz sampling
rate, the real-time implementation will rec{uire a sustained computational
throughput of the order of 10 GFlops. This clearly suggests that the
exploitation of a massive degree of parallelism is the key factor for-
achieving the required computational efficiency in a cost-effective fashion.

Swarztrauber and Sweet [3] have presented an extensive comparative analysis
of efficiency of various Fast Poissoil Solvers for implementation on vector and
parallel architectures. This study suggests that the Matrix-Decomposition (01,
F“ourier  Analysis [1,4]) algorithm is the most efficient for a realistic
parallel implementation by using a number of processors of the order of
hundreds. However, the practical implementation of the MD algorithm (though
for a three-dimensional problem [51) has shown that the resulting
communication cost can significantly reduce its efficiency for parallel
computation. A more extensive analysis of communication complexity of the MD
algorithm is presented in $4.

The Invariant Imbedding  algor-ithm  [6,7] was one of the earliest methods for
direct. solution of the Poisson equation. However, with the development the
Fast Poisson Solvers with a much greater efficiency, it seems that less
attention is paid to this algorithm. In this paper we develop a novel variant
of this algorithm, designated by Fast Invariant Imbedding algorithm, which
achieves the same computational efficiency as the best Fast Poisson Solver.
The main advantage of the Fast Invariant Imbedding algorithm over the other
Fast Poisson Solvers and particularly the MD algorithm is that it is
significantly more efficient for parallel computation, In fact, the simple
communication and synchronization requirements of our algorithm enables its
efficient implementation on a variety of parallel and vector architectures.

This paper is organized as follows, In $2, the Dirichlet problem for the
Poisson equation and the MD algorithm are reviewed. In $3, we first review the
the original Invariant Imbedding algorithm. We then develop the Fast Invariant
Imbedd~ng and discuss its extension to solution of the problem with Neumann
boundary as well as its excellent numerical properties, In $4, the parallel
~mplementation of the Fast Invariant Imbeddlng  algorithm on various parallel
architectures is discussed and its performance is compared with that of the MD
algorithm. We also present a hybrid parallel/pipeline strategy for efficient
computation of our algorithm along with two algorithmically specialized
parallel architectures for

2. TWO-DIMENSIONAL POISSON

2.1. Dirichlet Problem

its optimal and cos~-effective lmp_lementation.

EQUATION AND MATRIX-DECOMPOSITION ALCORITHX

We consider the Dirichlet problem for the two-dimensional (2D) Poisson
equation in a unit square domain Q with boundary 8Q as

V2U(X,Y) = f(x,y) (X,y)cn (2.1)

U(x,y) = g(x,y) (X,y)cm

Superimposing a uniform mesh of size Ax = by = l/(N+l) and using the five-
point finite-difference approximation, the problem is reduced to’ solution of a
linear system
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for U where
2 2

McRN ‘N is a block tr:
I is the NxN identity

IM?N’N is a tridiagona
2

u = col{ui}&RN  , i = 1

diagona
matrix,

Mu =W (2.2)

matrix given by M = Tridiag[-1,  B, -I],

matrix given by B = Tridiag[-1, 4, -l],

to N, and U,= CO1{U , ,}cRN, j = 1 to N, is the vector

representing the approximate solution for u(x,Y), and
2

w = col{wi}mN , i = 1 to N, and WI = Col{w ~ ~}cRN, j = 1 to N, is the vector

resulting from the discretization of f(x,y) and g(x,y).

Alternatively, we present vectors of dimension N2 by NxN matrices. To this

end, the matrix representation of U and W at-e denoted by ~ and ~ where

Q ~ {Ui~} and ~ ~ {W~j}cRNxN, iandj=ltoN.

2.2. Matrix Decomposition Algorithm

The MD algorithm is based on a specific decomposition of matrix M.
Following theorem is used in the derivation of the algorithm.

Theorem 1. The Eigenvalue-Eigenvector (E-E) decomposition of a symmetric

tridiagonal toeplitz matrix S = Tridiag[b, a, b]cRNxN is given as
s = QA~Q

The matrix Q = {Qij}clRNxN, i and j = 1 to N, ~s the set of normalized

eigenvectors  of S with Q = (2/N+l)l’2 (sin(ijn/N+l)).  The diagonal matrixlJ
As = Diag{A~i}dRNxN is the set of eigenvalues with k = a + 2bcos(in/N+l)

S1
being the ith eigenvalue. ,’

Proof. See for example Barnett [8].

Note that, Q is a symmetric orthonormal  matrix and hence Q = Q-* = Qt (t
denotes the transpose).

2 2
Let us define a matrix Q Q Diag[Q, Q,. ..,Q, QIcRNXN . From its definition,

it follows that Q is a symmetric orthonormal matrix and hence Q = Qt = Q .-1

2 2
Also, consider a symmetric permutation matr~x PeR‘XN that arises in 2-D

Discrete Fourier Transform (DFT). If two vectors V and R of dimension N2 are
defined as V = COl{Vi} and R = Col{Rl},  i = 1 to N, and V, = col{v ~ ~} and

Ri = CO1{R, ,}, j = 1 to N,

matrix representation of V

That is, P is the operator

then V = PR implies that V = R 0;, using
l$J J,l”

and R, we have

v = PR+~=~t

for matrix transposition. We also have P-l = Pt,
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since P 3s a permutation matrix and hence it is orthogonal, and P = Pt = F’-l,
since P is symmetric.

Theorem 2. The matrix M has a decomposition as

M= QPTPQ (2.3)

where T is a block diagonal matrix given below.

Proof. From Theorem 1, the E-E decomposition of B is given as B = QABQ where

AB = Diag{AB1}cRNxN,  i = 1 to N, and A~i = 4 - 2cos(in/N+l). Using the E-E

decomposition of B, the matrix M can be expressed by

M = Tridiag[-1, QA~Q, -I] = QAQ (2.4)

where A is a block tridiagonal matrix as A = Tridiag[-1, A -11, The block
B’

elements of A are diagonal and hence the matrix A can be reduce to a block
diagonal matrix as

A = PPAPP = P(PAF’)P = PTF’ (2.5)

where T = Diag{Ti} and Ti = Tridiag(-1,  ABi, -1]. The decomposition of M,

given by (2.3), follows by substituting [2.5) into (2.4). D

The MD algorithm is derived by substituting the decomposition of matrix M
~nto (2.2). The computation of the MD algorithm is performed as follows.

Step 1: Compute ~ = QW or ~i = QWi for i = 1 to N.

A

Step 2:
.

Form vector ~= P~or ~=~t, i.e., Wi , =fij,i for i and j = 1 to N.
,

Step 3: Solve the tridiagonal systems Tifii = ;l for i =ltoN

Step 4: Form vector ~ = PO or ~ = ~t, i.e., ~ =G for i and j = 1 to N
l,j j,l

Step 5: Compute U = @ or Ui = Q~i for i = 1 to N.

The matrix Q is the operator of 1-D Discrete Sine Transform (DST). Thus, by
using fast techniques [9], the matrix-vector multiplications in Steps 1 and 5
can be performed in O(NLog N). This leads to a computational complexity of

0(N2Log N) for Steps 1 and 5. The cost of each tridiagonal linear system

solution in Step 3 is of O(N) which leads to a cost of 0(N2) for this step,

3. THE INVARIANT IKBEDDINC ALGORITHM

3.1. The Original Invariant Imbedding  Algorithm

The Invariant Imbedding algorithm [6,7] is based on the observation that
the solution of (2.2) is equivalent to that of a discrete two-point boundary-
value problem given by

i = 1 toN (3.1)

with boundary values U. and UM+I. Note that, U. and UM+I are given through the

4



specification of boundary conditions in (2. 1). A solution to (3.1) is then
sought of the form:

u = Aiui + R,
i+i (3.2)

where matrices Ai’s and vectors Ri’s are independent of U,’s. From (3, 1) and

(3.2), it follows that

u, = (EI - Ai)-lU ~-1 + (B - Ai)-~(R1 + Wi) (3.3)

from which the recurrences for computation of Ai and Ri are derived as

A = [B - Ai)-l
1-1

R“il= (B- Ai)-l(R1 +Wl) =A ,-l(Ri + W,)

(3.4)

(3.5)

The initial conditions for the above recurrences are obtained by considering

(3.2) for i = N which implies that A = O and R = U As is shown in [6,7],
H N N+l”

from positive definiteness of B it follows that the matrices (B - A~) are also

positive definite and hence nonsingular.

The computation of Invariant Imbedding algorithm is performed as follows.

Step 1: Compute Ai ~ from (3.4) for i = N to 1 with AN = O.

Step 2: Compute R~ ~ from (3.5) for ~ = N to 1 with RN = UN+I.

Step 3: Compute Ui+l from.,(3,2) for i = O to N-1 with U. given.

The computational complexity of Step 1 is of 0(N4) while that of Steps 2

and 3..is of 0(N3). This leads to an overall computational complexity of O(N4)
for the algorithm. However, the matrices Ai’s are only function of problem’s

size (i.e., N), the type of finite-difference scheme employed, and the type of
boundary condition. Thus, for some cases, such as real-time control of SELENE,
these matrices can be precomputed. With this precomputation, the computational

cost of the algorithm is reduced to 0(N3) which indicates that the algorithm
is still less efficient than other Fast Poisson Solvers.

3.2. A Fast Invariant Imbedding Algorithm

The inefficiency of the Invariant Imbedding algorithm results from the fact
that it requires the inversion of dense matrices A,’s. However, as shown

below, these matrices have fast E-E decomposition which allows the
diagonalization  of (3.2), (3.4), and (3.5). This diagonalization results in an
algorithm that not only it is highly competitive for sequential implementation
but also it 1s very efficient for parallel and vector computation. The
diagonalization  procedure is based on the fact that the matrices Ai’s have a

same set of eigenvectors but different sets of eigenvalues.  This is
established by the following theorem.

Theorem 2. The E-E decomposition of matrix A~ is given as
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A
1

= QAAiQ

where AAI = Diag{A *l J}sRNXN, j = 1 to N, is given below.

Proof. The proof follows by induction. From (3.4), for

A
N-1

= B-l = (QABQ)-I = QA-iQ

which implies that

A = A; 1
AN-1

Now let Ai+l = QAAi+lQ. From (3.4), it follows that

(3.6)

= N we have

Ai = (B - Ai+l)-i = (QA~Q - QA
Ai+lQ)-l  = ‘(AB  - ‘A,+, )-’Q D

The set of eigenvalues of matrices A,’s are then given by

A
Al

= (AB - A )-1, i = N-1 to O, with AAN = O
Al+l

(3.7)

Substituting the E-E decomposition of Al’s, given by (3.6), into (3.2) and

(3.5), and defining

Oi =QUI, ~i = ~1, andw = QWi
i

the fast variant of Invariant Imbedding algorithm is then given by
,.

Ril=AAi-l(ili  + tii), i = N to 1, with ~H = ~N+l (3.8)

u = AAiui + ii, i = O to N-1, with given ~.1+1 (3.9)

where A*~’s are computed from (3.”/). The efficiency of the algorithm can be

further increased by avoiding the explicit computation of O. and u~+l, i.e.,

by avoiding explicit transformation of U. and UN+I. To this end, we rewrite

(3.8) for i = N as

RN1=A
AN-l(RN +  ‘N) =  ~AN-I ‘UN+,

MN)=AA“-Ii’”

where ~’
N
= QW~ and W’ = U + WN. Similarly,

N N+ 1 we rewrite (3.8) for i = O as

01 = AAOUO + F. = ‘#~ +  ‘AO(fi~ +  ‘1) =  ‘Ao(fil +  v’)1

where ~’ =QW~andW; =Uo+W
1 1“

The computation

Step 1: Compute

Step 2: Compute

Compute

Step 3: Compute

R=A

of Fast Invariant Imbedding algorithm is performed as follows,

A
Ai = (a - A )-1,B

i = N-1 to O, with AAN = O.Ai+l

w’ =Uo+wi, w’”=u +W and set W’ = W i = 2 to N-1.1 “+1 N’ i i’

i’ = QW’ or V’ = QW~ for i = 1 to N.i

R, ~ for i = N-1 to 1 from
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Step 4: Compute ~~+1

u = A*ioi
1+1

Step 5: Compute U =

for i = 1 to N-1 from

+ iii with ~1 = AAo(~l +

(?0 or u = Q~~ for i =
i

Note that, similar to matrices Ai’s,

1 to N.

the diagonal matrices AAi’s are only

function of problem’s size, the type.of finite-difference scheme, and boundary
conditions, and hence for some cases they can be precomputed, However, in the
following, the possibility of this precomputation is not considered in
evaluating the computational cost of the algorithm.

The computational complexity of Steps 1, 3, and 4 is of 0(N2). Except for
the computation of W; and W~, the computation of Step 2 and 5 are exactly the

same as the Steps 1 and 4 of the MD algorithm. It follows that the Fast
Invariant Imbedding algorithm is, asymptotically, as fast as the MD algorithm

with the same constant for N2L,og N-dependent term, A more detailed comparison
can show that the algorithm is also competitive in terms of the actual number
of operations. Let f denote the cost of one floating-point operation. The

cost of Steps 1, 3, and 4 is given by 6N2f. Boisvert [101 has compared various
algorithms for solution of symmetric tridiagonal  toeplitz systems. Using the
best general algorithm in [10] the cost of solving N tridiagonal systems in

Step 3 of the MD algorithm is also given by 6N2f.

3.3. Numerical Properties of Invariant Imbedding  Algorithms

Both the original and Fast Invariant Imbedding algorithms have excellent
numerical properties. Angel [6] has shown that the recurrence in (3.4) is
stable in the sense that an error introduced at any stage of the calculation
does not cause larger errors in the preceding stages and, asymptotically, it
will be reduced to zero. It then follows that the recurrence in (3.7) is also
stable since it is obtained from (3.4) through an orthogonal transformation.
The two vector recurrences jn (3.8) and (3.9) can be written as two sets of N
scalar First-Order Inhomogeneous Linear Recurrences (FOILRS) as

ii =A
i-l,j AH,,(R,,,+ V;,,)’ ‘= N-ltO1and J=ltON (3.10)

0 A o +E
1+1, J =

i= ltoN-landj=lto  N
Ai,j i,j i,j’

(3,11)

Similarly, (3.7) can be written as a set of N scalar first-order nonlinear
recurrences as

.
A 1=
A1,J A -A

,1 = N - l t o O a n d j = N t o l ,  withAAMJ=O
Bj Ai+l,j ,

(3.12)

Note that, (3.12) represents a Continued Fraction which can be transformed to
a second-order linear recurrence [11]. Since ABj>2 for all j = 1 to N, it can

be then easily shown by induction that I>A >0. This implies that the two
AIJ

sets of recurrences in (3. 10)-(3, 11) are stable in the sense that an error
introduced at any stage of the calculation does not cause larger’  errors in the
preceding stages and, asymptotically, it will be reduced to zero.
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3.4. Neumann Problem

At first glance, the extension of both Invariant Imbedding algorithm and
its fast variant to the solution of problem with other boundary conditions
might seem less straightforward than that for other FF’SS. For the Invariant
Imbedding  Method appears to be well suited for Dirichlet boundary condition
for which U. and UN+I are explicitly given, Angel and Bellman [7] have

extended the Invariant Imbedding algorithm for Neumann-Dirichlet  boundary
condition. Here, we extend the Fast Invariant Imbedding algorithm to the
solution of problem with a more generalized Neumann-Neumann boundary
condition given by

~ (O,y) = @o(y) and ~ (l,Y) = @l(y) (3. 13)

~ (x,O) = @o(x) and ~~ (x,1) = Wl(x) (3.14)

where @o(y), 41(Y), PO(X), and WI(X) are given functions.

Extending the domain by introducing fictitious points u(-l,j) and u(N+2,  j),
for j = O to N+l, (3.1) is now written as

-LII+BU, -U1+I=W; i=OtoN+l (3. 15)

where, now, Ui and W~clR(N+2), and BcR(N+2)X(N+2) is a tridiagonal matrix as

I I
4 -2

-1 4 -1
B=”.”.”.

-1 “4 ‘-l

-2 4

(3. 16)

The structure of matrix B results from the ciiscretization  of the boundary
condition in (3.13) by using a central-difference scheme with a second ord’er
accuracy. Also, the vectors W;, for i = 1 to N, include the contribution of

@o(y) and @l(y). The expressions of W: and W’ are given below.
N+l

By using the results of [9, p. 252], it can be shown that the E-E
decomposition of matrix B is given by:

B = QA~Q-l (3.17)

The matrix Q = {Qij}cR(N+2)x(N+2), i and j = O to N+l, is the set of

eigenvectors of B with Q
ij

= cos(ijn/N+l)}  and AB = Diag{A~i }cR(N+2)x(N+2),

i = O to N+l, is the set of eigenvalues of B with A~l = 4 - 2cos(i?I/N+l) being

the ith eigenvalue. Note that, the matrix Q is not orthogonal, However, as

shown in [9], Q and Q-l can be expressed as:

Q = (3Y and Q-l = (2/N-l)!f’-10

where 0 is the 1-D Discrete Cosine Transform (DCT) operator and Y is a
diagonal scaling matrix given by Y = [2, 1, . . . . 1, 2]. Defining the
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normalized DCT operator as 8 = (2/N+2) 1’28, (3.17) can be then written as

B = 9YABY””%

Defining

Oi = emi + Ui = Y’-lai

the diagonalized version of (3.15) is written as:

- g ~ + Apl - CJ+l = i; i=OtoN+l (3.18)

Discretising (3.14) by using a central-difference scheme gives

(3.19)

(3.20)

where WI = CO1{WI(XJ)} and W. = col{~o(x~)}, j = O to N+l. From (3.18)-(3.20)

it follows that

-2UN + A u = i“+l + 61 = Q;+l
B N+l (3.21)

-201 + A*ijo = R. + ;0 = Q; (3.22)

We are seeking a solution of the form:

u = AiU, + Ri or ~i+l = AAifi~ + fii
1+1 (3.23)

Considering (3.23) for i = N and from (3,21) it follows that

A = 2A~i and RN = A~l~~+l
AN

(3.24)

and considering (3.23) for i = O and from (3,22) we get

00 = (AB - 2AAO)-1(2E0 + u;) (3.25)

Starting with AAN and RN given by (3.24), AAi and ~i, i = N-1 to O, can be

computed as before from (3.7)-(3.8). Once AAO and fio are computed, ~. can be

obtained from (3.25) and then ~i, for i = 1 to N, can be computed from (3.23).

As can be seen, except for the use of matrices W’ and $’-iEl for performing the
direct and inverse DCT, the above procedure differs from that of Dirichlet
boundary condition of $3.2 only in computation of AAN, ~M, and ~o.

Note that, since ABJ>2 for j = O to N, from (3.24) we have A <1. It
AN,J

can be then easily shown that A <I for al] i and j
Ai,J

= O to N. Thus, we have

A
BJ

- 2A >0
AO J

which proves that the diagonal matrix in (3.25) can be inverted.

4. Parallel Implementation of Fast Invariant Imbedding  Algorithms

In this section we discuss the performance of the Fast Invariant Imbedding
algorithm for parallel computation. We compare this performance with that of
MD algorithm while implemented on the same architecture.
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4.1. Fine Grain Parallel Computation: Time and Processor’s Bounds

With O(N2) processors, the computation c)f the MD algorithm can be performed
in O(Lo,g N) [12] as follows. In Steps 1 and 5 the N DSTS can be computed in
parallel. Each DST can be performed in O(Log N) with O(N) processors [121.

Thus, by using 0(N2) processors, the cost cjf parallel computation of Steps 1
and 5 is of O(Log N). In Step 3, N tridiagonal  systems can be solved in
parallel. With O(N) processors, each tridi?igonal  system can be solved in
0(1.og N), by using, for example, the parallel algorithms in [131. Thus, with

O(N2) processors, the cost of parallel computation of Step 3 is O(L.og N).

The same time- and processor-bounds can be also achieved for the Fast
Invariant Imbedding algorithm. Step 1 involves the evaluation of N decoupled
CFS ($3.3). With O(N) processors and by using the algorithm in [111, each CF

can be computed in O(Log N). Thus, by using O(N2) processors, the cost of
parallel computation of this step is of 0(1.og N). In Step 2, the two vector
additions for computation of W; and W: can be performed in O(1) by using O(N)

processors. The rest of the computation in Step 2 and the computation of Step
5 are exactly the same as in Steps 1 and 5 of the MD algorithms and thus can

he performed in O(Log N) by using O(N2) processors. The vector recurrences in
Steps 3 and 4, as shown in 53.3,, can be decomposed into a set of N decoupled
scalar FOILRS.  With O(N) processors and by using the algorithms in [11,13],

each FOILR can be computed in O(Log N). Thus, with 0(N2) processors, the
complexity of parallel computation of Steps 3 and 4 is of O(Log N).

However, achieving the time lower bound of O(Log N) in parallel computation
of either the MD algorithm or the Fast Invariant Imbedding algorithm requires
an excessive number of processors. More important, in order to limit the
communication complexity to O(Log N), a very complex processors
interconnection is required. In the following, we consider a more realistic
coarse grain parallel implementation of both algorithms.

4.2. Coarse Grain Parallel Computation

We consider a coarse grain parallel computational strategy by using N
processors. It should be mentioned that the early interest in the MD algorithm
was motivated by its theoretical efficiency for parallel implementation with N
processors [41. In fact, with N processors, the computation of N decoupled
DSTS in Steps 1 and 5 can be performed fully in parallel with a complexity of
O(NLog N). That is, the cost.of parallel implementation of Steps 1 and 5 is
equal to that of one DST. Similarly, the N decoupled linear systems in Step 3
can be performed in parallel. Thus, the cost of parallel computation of Step 3
is equal to that of one single linear system solution. This implies  a perfect
linear speedup of N in the computation by using N processors.

However, a close examination shows that the resulting communication cost
can significantly degrade the overall performance of such parallel computation
strategy. To see this, recall that the operation in Steps 2 and 4 corresponds

to transposing matrices & and ~. The communication complexity of matrix
transposition is a function of the processors interconnection structure. With
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N processors interconnected with a perfect shuffle or a Hypercube topology,
the communication complexity of matrix transposition is of O(NLOg N) [14,15].
This implies that, asymptotically, the computation and communication costs are
the same. Obviously, on architectures with simpler interconnection topologies,
e.g., linear array or mesh, the communication cost will be much greater than
the computation cost.

However, the practical implementation on MIMD architectures wjth even
Hypercube  topology can result in an actual communication cost much greater
than the computation cost. To see this, let p and a denote the cost of the
communication start-up (or, latency) and the elemental transfer time. Note
that, usually, a is approximately equal to the cost of one floating-point
operation, i.e. , f, while fk$a [16]. The communication cost of Steps 2 and 4,
by using the algorithm in [15], is then given by 2(@+a)(NLog N). Neglecting
the lower order terms, the computation cost of Steps 1 and 5 is given by
5f(NLog N). Since f.1 is much greater than f (even by
magnitude for many commercially available Hypercube
that the communication cost of the algorithm can be
computation cost.

Now, let us consider the parallel implementation
Imbedding algorithm by N processors, deno,ted by PRi

as much as two orders of
architectures), it follows
indeed much greater the

of the Fast Invariant
for i =

the computation of W; by PRI and W; by PRN can be performed

cost of O(N). The rest of the computation of Step 2 as well
can be performed similar to that of Steps 1 and 5 of the MD
cost of O(NLog N) in fully parallel fashion and without any
among processors. By using the parallel algorithms in [111,

1 to N. In Step 2,

in parallel with a

as that of Step 5
algorithm with a
communication
the computation of

CFS in Step 1 and the FOILRS in Steps 3 and 4 can be computed in O(N1.og N). On
an architecture with a perfect shuffle interconnection, the communication
complexity of such a strategy for parallel computation of Steps 1, 3, and 4 is
of O(NLog N). Thus, on an MIMD architecture with the perfect shuffle topology,
the communication complexity of the Fast Invar~ant Imbedding  algorithm will be
of O((~+aN)Log N). For typical values of N of the order of hundred, this
represents about two orders of magnitude improvement in the communication
cost over that of the MD algorithm on the same architecture.

The simple communication structure of the Fast Invariant Imbedding
algorithm enables its efficient implementation on architectures with even
simpler processors interconnection topology, To see this, let us consider the
implementation of the algorithm on an MIMtl architecture with a simple nearest
neighbor interconnection (Fig. 1). As is shown in [13], with a nearest
neighbor interconnection the communication complexity of parallel computation
of Steps 1, 3, and 4 will be of O((13+aN)N). Insofar as fl>a and for the values
of N in the range of hundreds, this represents a major improvement over the
communication cost of the MD algorithm implemented with a hypercube topology.

The Intel i860 and DEC Alpha are representatives of an emerging class of
single chip processors with vector processing capability. Such vector
processors are increasingly used as processing nodes in massively parallel
MIMD architectures, e.g., Intel Touchstone Delta and Paragon, and CKAY T3D. If
the architecture of Fig. 1 is implemented by using such low-cost and powerful
vector processors then a further speedup in computation of the Fast Invariant
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Imbedding algorithm can be achieved. This follows from the fact that parallel
computation of Steps 1, 3, and 4 involves operations on.long vectors and hence
is highly efficient for vector processing,

4.3. Algorithmically Specialized Parallel Architectures for Implementation of
Fast Invariant Imbedding Algorithm

4.3.1 A Coumnunication Efficient Variant of Fast Invariant Imbedding Algorithm

It is possible to further reduce the communication cost of the Fast
Invariant Imbedding algorithm by using a hybrid parallel/pipelined
computational strategy. To see this, note that, the above discussed N-parallel
strategy is based on parallel computation of Step 1, with diagonal matrices

A as the basic data, and Steps 3 and 4,
Al

with vectors ~, and O, as the basic

data. However, as shown in Eq. (3.12), the computation of Step 1 can be
reduced to that of a set of CFS. Similarly, as shown by Eqs. (3.10)-(3. 11),
the computation of Steps 3 and 4 can be reduced to that of a set of scalar
FOILRS. An efficient hybrid paraIlel/pipelined  computational strategy is then
based on parallel computation of Steps 2 and 5 as before but pipelining in the
computation of the set of CFS in Step 1 and the sets of scalar FOILRS in Steps
3 and 4. In order to describe this pipelining  strategy, let us again consider
an implementation by using N processors, denoted

activities of processors PR1 for computing Steps

Step 1

For j = 1 to N, Do For j = 1

Receive A from PR1+l
Ai,j

Compute A = I/(a*, - AA* ,)
Ai-1, J *

Receive

Compute

by PRi for i = 1 to N. The

1, 3, and 4 is then given as

Step 3

to N

ii from PR,+l
l,J

R =A
1-l,J Ai-l, }Ri,J + ‘;,)

Send A to PR
Ai-l, j

Send ~
1-1

to PRi ~
Al-l, J

End_Do End_Do

Step 4

For j = 1 to N, Do

Receive ~ from PRi ~
l-l,j

Compute O = A - +fi
l,J A1-l,JU1-l, J 1-l,J

Send A to PR1 ~
Ai-l,j

End_Do

With this pipelining strategy, the complexity of computation of Steps 1, 3,
and 4 is of O(N) which indicates a spcedup of O(N). More important, is the
fact that, by overlapping the computation and communication, the communication
cost is now of O(1) while only demanding data transfer between Adjacent
processors. Note, however, that this parallel/pipeline strategy leads to a
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heterogeneous computational structure since it involves highly coarse grain
computations in Steps 2 and 5 and very fine grain computations in Steps 1, 3,
and 4. In fact, the key to an efficient implementation of this pipeline
strategy is the capability to perform fine grain computation as well as fast
nearest neighbor communication. In this regard, this strategy is not suitable
for implementation on the MIMI) architecture of Fig. 1 since it can not perform
nearest neighbor communication in a fast and efficient way. In the following,
we discuss two more optimal architectures for implementation of this parallel/
pipeline strategy,

4.3.2. An Optimal Algorithmically Specialized Parallel Architecture

The computation of various Discrete Transforms (DTs) arises in many
engineering and scientific applications. This has motivated the development of
special-purpose chips for fast computation of DTs by both academia and
industry. These chips achieve an optimal performance in performing DTs by
customizing the hardware architecture for the specific application and by
exploiting a high degree of parallelism in the computation. An extensive
survey of such special-purpose chips for performing DCT (which also arises in
data compression applications) is presented in [17]. We have also presented a
new hardware technology based on charge domain computing devices [18] which is
particularly efficient for performing various DTs since it is capable of
exploit~ng a massive degree of parallelism in the computation.

A heterogeneous, algorithmically-special ized, parallel architecture for
optimal implementation of the Fast Invariant Imbedding algorithm can be then
designed by using special-purpose chips for performing the DC’fs in Steps 2 and
5, and fine-grain processors, such as Digital Signal Processor (DSP) chips,
for computation of Steps”l, 3, and 4. Figure 2 shows such an architecture. The
optimality of this architecture for the Fast Invariant Imbedding algorithm
follows from the fact that, in addition to efficient implementation of the
para~lel/pipeline  strategy and thus minimizing the communication cost, it
allows a fast computation of Steps 2 and 5 by using special-purpose chips and
exploiting further parallelism in computation of DCTS.

4.3.3. A Low Cost Algorithmically Specialized Parallel Architecture

The development of DSP chips was mainly motivated for computing DTs. The
DSP chips only employ a pipelined architecture to speedup the computation of
DTs. In this regard, they can not achieve the optimal performance of other
special-purpose chips which exploit a high degree of parallelism in the
computation. Nevertheless, the DSP chips can be used both as fine-grain
processors for performing Steps 1, 3, and 4 and as coarse-grain processors
for performing the DCTS (though with less optimal performance).

This suggests that a linear array of DSP chips (Fig. 3) can also be used
for efficient implementation of the parallel/pipeline strategy for the Fast
Invariant Imbedding algorithm, Although, compared with the architecture of
Fig. 2, this architecture achieves a less optimal performance in computing
Steps 2 and 5, it represents a much more cost-effective alternative with a
greater ease for the design and implementation.
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Figure 1. An MIMD Parallel Architecture with Nearest Neighbor Interconnection

VP: Vector Processor, e.g., Intel i860, DEC Alpha

Figure 2. An Optimal Algorithmically Specialized Parallel Architecture

FP: Fine Grain Processor, e.g., a DSP Chip SP: Special-Purpose Processor for performing DCT

E1--EIt”’==+zl
Figure 3. A Linear Array of Low-Cost DSP Chips

DSP: Digital Signal Processor Chip
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